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1. Introduction

With the rapid development of the modern industries, the detec-
tion and identification of gear pitting faults in mechanical transmis-
sion systems have become one of the critical issues. Establishing a 
reliable health detection system, especially for gear fitting faults, is 
the key to ensuring smooth operation of industrial equipment.

Traditionally, vibrational signals are used as monitoring signals 
for gear fault diagnosis as reported in the literature. For example, 
Praveenkumar et al. [18] extracted statistical inquiries from the ac-
quired gearbox vibration signals. The extracted features were given 
as input to the support vector machine for fault identification. Zuber 
et al. [35] used a complete set of vibration features as input to the 
self-organized feature maps and discussed the implementation of fea-

ture-based artificial neural networks and vibration analysis to achieve 
automatic gearbox fault identification. Of course, these methods have 
achieved good results. However, due to the influence of the external 
environment, the vibration signals contain a large amount of envi-
ronmental noise. Therefore, acoustic emission (AE) technology has 
gradually been introduced into mechanical fault diagnosis. Crivelli 
et al. [7] proposed that AE is a potentially suitable technique for de-
tecting early fatigue cracks because it is sensitive to high frequencies 
generated by crack propagation and is not affected by low-frequency 
noise. The method proposed by He et al. [13] uses a short-time Fou-
rier transform to pre-process the AE sensor fault signal of the bearing. 
The verification results show an accurate classification. Qu et al. [20] 
proposed an AE signal processing method based on an improved time 
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Gear pitting fault is one of the most common faults in mechanical transmission. Acoustic emission (AE) signals have been effective 
for gear fault detection because they are less affected by ambient noise than traditional vibration signals. To overcome the problem 
of low gear pitting fault recognition rate using AE signals and convolutional neural networks, this paper proposes a new method 
named augmented convolution sparse autoencoder (ACSAE) for gear pitting fault diagnosis using raw AE signals. First, the pro-
posed method combines sparse autoencoder and one-dimensional convolutional neural networks for unsupervised learning and 
then uses the reinforcement theory to enhance the adaptability and robustness of the network. The ACSAE method can automati-
cally extract fault features directly from the original AE signals without time and frequency domain conversion of the AE signals. 
AE signals collected from gear test experiments are used to validate the ACSAE method. The analysis result of the gear pitting 
fault test shows that the proposed method can effectively performing recognition of the gear pitting faults, and the recognition rate 
reaches above 98%. The comparative analysis shows that in comparison with fully-connected neural networks, convolutional neu-
ral networks, and recurrent neural networks, the ACSAE method has achieved a better diagnostic accuracy for gear fitting faults. 
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Pitting kół zębatych stanowi jedno z najczęstszych uszkodzeń przekładni mechanicznych. Do wykrywania takich uszkodzeń stosuje 
się sygnały emisji akustycznej (AE), które, ze względu na niższą wrażliwość na hałas otoczenia, stanowią skuteczniejsze narzędzie 
diagnostyczne niż tradycyjne sygnały wibracyjne. Wykrywalność zużycia guzełkowatego (pittingu) kół zębatych przy użyciu sygna-
łów AE i splotowych sieci neuronowych jest jednak niska. Aby rozwiązać ten problem, w niniejszym artykule zaproponowano nową 
metodę diagnozowania uszkodzeń kół zębatych za pomocą surowych sygnałów AE, którą nazwano augmented convolution sparse 
autoencoder (konwolucją rozszerzoną z wykorzystaniem autoenkodera rzadkiego, ACSAE). Jest to metoda samouczenia jedno-
wymiarowych splotowych sieci neuronowych realizowanego za pomocą autoenkodera rzadkiego. Metoda ta wykorzystuje teorię 
wzmocnienia do zwiększania adaptacyjności i odporności sieci. Metoda ACSAE pozwala na automatyczne wyodrębnianie cech 
degradacji bezpośrednio z oryginalnych sygnałów AE bez konieczności ich konwersji do domeny czasu i częstotliwości. Walidację 
metody przeprowadzono na podstawie sygnałów AE otrzymanych w badaniach kół zębatych. Analiza wyników badań pittingu kół 
zębatych wskazuje, że proponowana metoda pozwala na skuteczną detekcję tego typu uszkodzeń, przy wskaźniku wykrywalności 
powyżej 98%. Analiza porównawcza pokazuje, że metoda ACSAE cechuje się większą trafnością diagnostyczną w wykrywaniu 
błędów montażowych kół zębatych w porównaniu z sieciami neuronowymi w pełni połączonymi, splotowymi i rekurencyjnymi. 

Słowa kluczowe: diagnostyka pittingu kół zębatych, autoenkoder, jednowymiarowa splotowa sieć neuronowa, 
sygnał emisji akustycznej.
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synchronous average. This provides us with an inspiration to develop 
a gear pitting fault diagnosis using AE signals.

For gear fault detection, Sharma et al. [23] used the Hertzian 
contact approach to propose a theoretical model for establishing the 
relationship between the magnitude of the fault and the AE energy 
produced in the gear. Aouabdi et al. [2] proposed a tool for anomaly 
detection based on the multi-scale entropy algorithm, which used the 
phase current measured by the induction motor driving the gearbox 
to identify local gear tooth defects. Ratni et al. [21] based on a com-
bination of maximum correlation kurtosis deconvolution and spectral 
kurtosis to fault diagnosis. Yao et al. [29] used the local mean decom-
position based on the adaptive decomposition of the signal itself to 
perform fault diagnosis of the gearbox. Song et al. [25] considered 
the random noise and the ensemble empirical mode decomposition 
(EEMD). A fault diagnosis method based on singular value decom-
position and improved EEMD was proposed. Feng et al. [10] pro-
posed a time-frequency analysis method for the diagnosis of planetary 
gearboxes. And Feng et al. [9] also proposed a simple and effective 
method for diagnosing planetary gearbox faults based on the ampli-
tude and frequency demodulation. These contributions have greatly 
enriched the literature on gearbox testing.

Many gear fault processing methods extract features based on 
prior knowledge and then use machine learning to classify the de-
gree of pitting, such as frequency domain analysis, wavelet trans-
form, mathematical morphology, support vector machine, etc. Yuan 
et al. [30] proposed empirical mode decomposition (EMD) of inte-
grated overall noise reconstruction to overcome the main problems 
of user-defined parameters and the incompatibility of high Signal to 
Noise Ratio (SNR) conditions. Liu et al. [15] proposed an integrated 
method of EMD and Wigner-Ville distribution for fault feature extrac-
tion. Krishnakumari et al. [14] proposed that under feature extraction, 
statistical characteristics such as standard deviation, kurtosis, etc. are 
considered as characteristics of the signal. Zhang et al. [32] used the 
EEMD to decompose various fault signals to achieve diagnose re-
sults. Chen et al. [6] proposed a method for identifying planetary gear 
faults based on double-tree complex wavelet transform denoising and 
Laplace feature map. Widodo et al. [27] used a short-time Fourier 
transform method to monitor faults in the gearbox. Li et al. [16] sup-
posed relative wavelet energy can identify the trend from the normal 
state to crack failure before the occurrence of broken tooth failure. 
Shao et al. [22] used principal component analysis and kernel princi-
pal component analysis to extract features from the fault features of 
selected data features and to reduce the effect of dimensional analy-
sis. Bafroui et al. [3] used Monet wavelets to process non-stationary 
vibration signals. Elforjani et al. [8] used vector machine regression, 
multi-layer artificial neural network models and Gaussian process re-
gression to correlate AE features with corresponding natural pitting. 
These methods play an important role in the development of gear fault 
diagnosis. However, with the increase in the number of equipment 
detection points and the sampling frequency, mechanical health mon-
itoring has entered the era of “big data”. The traditional intelligent 
diagnosis algorithm based on signal processing for feature extraction 
and classifier has high requirements for expert experience and cannot 
guarantee universality. It cannot meet the big data requirements of 
gear fault detection.

Fortunately, researchers have tried to use deep learning in the 
troubleshooting of gears. Zhao et al. [33] was inspired by the success 
of the deep learning method and redefines the representation learn-
ing of raw data. They proposed a local feature-based gated recurrent 
unit network for fault diagnosis. Zhang et al. [31] proposed a gear 
fault diagnosis method based on singular value decomposition and 
Radial Basis Function neural network for the problem that the weak 
gear fault signal is difficult to detect. Bangalore et al. [4] proposed an 
artificial neural network (ANN) based condition monitoring method 
using data from monitoring. Ali et al. [1] used ANN computational 

modeling to correlate data feedforward and recursive Eman neural 
network algorithms from AE sensors for the development of ANN 
models. Sreepradha et al. [26] used ANN to perform prediction and 
classification based on heuristic models based on spur gears. Recent-
ly, in the field of mechanical gear fault diagnosis, Qu et al. [19] pro-
posed a new method of unsupervised detection of gear pitting failure 
based on autoencoder theory. The proposed method was developed 
based on a deep sparse autoencoder. This method integrates the dic-
tionary learning to an autoencoder network in the sparse coding for 
analysis of fault diagnosis. Cao et al. [5] proposed a transfer learn-
ing method using the vibration signal to use the convolutional neu-
ral network (CNN) for gear fault detection. These methods of deep 
learning do not require manual extraction of fault features and also 
achieve better fault detection results. Moreover, CNN greatly reduces 
the number of network parameters through local weight sharing and 
can avoid the over-fitting of the network when the number of samples 
is insufficient. However, these methods still use vibration signals to 
achieve gear fault detection. As mentioned above, the vibration signal 
contains a large amount of environmental noise due to the influence 
of the external environment. It is not the ideal data for deep learning 
fault extraction.

Based on the above considerations, this paper takes the gear as the 
research object and improves the method of gear pitting fault diag-
nosis for the standard one-dimensional CNN model, which enhances 
the generalization performance of the model. A set of intelligent di-
agnosis algorithm named augmented convolution sparse autoencoder 
(ACSAE) being proposed. ACSAE combines sparse autoencoder into 
one-dimensional CNN, and the algorithm automatically performs fea-
ture extraction and fault identification using original AE data with 
low environmental interference. ACSAE does not require any test set 
information and it does not require any noise reduction pre-processing 
and time domain and frequency domain conversion. First of all, the 
model is trained using an automatic encoder and a one-dimensional 
CNN. Then, through unsupervised learning, the decoded data that is 
very close to the original data is obtained, and the training set is added 
to improve the robustness and adaptability of the network. Next, the 
model structure and model parameters retain unchanged to ensure 
that the encoder part retains the characteristics of the original data. 
Finally, through the fusion of one-dimensional CNN automatic learn-
ing features on the softmax classifier, a number of gearbox AE data is 
selected for fine-tuning the network, training classification model, to 
achieve accurate identification of gear pitting fault. The experimental 
results show that the proposed method not only improves the accuracy 
of gear fault identification, but also improves the correct rate of gear 
faults from 90.5% of the one-dimensional CNN alone to 97.9% of the 
ACSAE. The universality of the classification algorithm is signifi-
cantly improved, which can be used as an auxiliary basis for engineers 
and technicians to judge the degree of gear pitting fault.

The remainder of the paper is organized as follows. Section 2 de-
scribes the ACSAE method presented in this paper. This section main-
ly introduces the principle of autoencoder and the one-dimensional 
CNN algorithm and the proposed ACSAE method. In Section 3, five 
experiments were designed to verify whether the ACSAE algorithm 
can effectively classify gear pitting faults and give specific experi-
mental parameters. Section 4 analyzes and discusses the experimental 
results. The current research conclusions and future research direc-
tions are summarized in Section 5.

2. The methodology

AE technology is a new type of dynamic non-destructive testing 
technology, which uses the internal particles of the material to release 
the strain energy in the form of elastic stress waves due to the relative 
motion to characterize the internal structure of the object [34]. Since 
the AE signal is emitted by the fault source itself, the AE technology 
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can quickly detect and judge the gear pitting fault defect under the 
operating condition of the equipment.

The ACSAE method presented in this paper combines the one-di-
mensional CNN with the sparse autoencoder to enhance and optimize 
the network model and applies to original AE data for gear pitting 
fault diagnosis. The unsupervised layer-by-layer learning strategy can 
make the network parameters more precise. The problem of non-con-
vex optimization makes the detection effect of gear pitting fault more 
stable and reliable. The CNN greatly reduces the number of network 
parameters through local weight sharing and can avoid the over-fitting 
of the network when the number of samples is insufficient [11]. How-
ever, the traditional CNN method of random initialization still has 
the risk of falling into a local optimum. In response to this situation, 
this paper presents a method to update traditional CNN using sparse 
autoencoder (SAE). Because SAE can compress the key features of 
the input signals, it is more effective to use these key data for the gear 
pitting diagnosis. As shown in Fig. 1, first, the original AE signals are 
encoded and compressed through convolutional networks. Then the 
convolutional features are deconvolved back to generate the recon-
structed signals, and the weights are optimized to minimize the error 
between the reconstructed signals and the original signals. After that, 
the decoded features are added to the input data, encoded in the same 
way, and sequentially cycled. Finally, a fully connected network and a 
classifier are added to the network, and the network is fine-tuned with 
a small number of tagged samples to provide enhanced gear pitting 
fault identification.

Fig. 1. The general procedure of the proposed ACSAE method

2.1. Sparse autoencoder

An autoencoder is an unsupervised learning method in deep learn-
ing, which uses a back propagation algorithm and has a good ability 
to learn the characteristics of the dataset [17]. Given a training sam-
ple set 1 2 3 4 5 6{X ,  X ,  X ,  X ,  X ,  X }=X  for the autoencoder network 
structure as shown in Fig. 2, the autoencoder network tries to pass 
the original data X, through the process of encoding and decoding, 
restore the data ′X  so that ′ ≈X X . Different hidden layer units can 
have different activation levels for the input data. In general, a SAE 
network achieves the goal of sparseness by sparsely constraining the 
hidden layer of the autoencoder network, that is, only a small number 
of hidden layer units are activated [28]. SAE can usually learn a low-
dimensional representation of input data that is very similar to princi-
pal component analysis results.

Fig. 2 shows an example of a neural network with three hidden 
layers. The entire neural network has a layer depth of 5, including 
an input layer, three hidden layers, and an output layer. Express the 

equation in vector form, defining 1jz +  in Eq. (1) and 1ja +  in Eq. (2). 
Where W is the weight, and the weight is continuously updated by the 
gradient descent method to reduce the function loss. jz  is expressed 
as the sum of the multiplication of the input and weight values of the 
jth layer and the bias jb . f is the activation function:

 1j J j jz W a b+ = +  (1)

 a f zj j+ += ( )1 1  (2)

Assume that ja  indicates the output value of the hidden layer 
neuron j with input iX . Then the average activate degrees of the hid-
den layer neurons j — ˆ jρ  can be computed in Eq. (3). ρ  is a sparse 
parameter, which is close to zero:
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To limit the average activate degrees where ˆ jρ  is different from 
ρ  by adding a penalty term to the objective function. This allows the 
average activate degrees of the hidden layer neurons to be distrib-
uted in a small range. 2s  represents the number of hidden neurons 
in the hidden layer, and j represents the jth neuron in the hidden layer. 
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The total cost function of the sparse autoencoder system can be 
expressed as Eq (5). In Eq (5), 2s  represents the number of neurons 
in the hidden layer, β  represents the weight of the penalty term, W  
is the coding matrix, and b  is the coding deviation. As the gap be-
tween the two sparse parameter larger, the value of the penalty factor 
rises sharply:

Fig. 2. The structure of autoencoder
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2.2. One-dimensional CNN

A CNN is a feedforward neural network. As shown in Fig. 3, it 
is usually composed of alternating convolutional layers and pooling 
layers. The convolutional layer can capture the regional connection 
features in the input data, and the principle of weight sharing is ap-
plied. The principle of weight sharing of convolution kernels is due 
to the fact that there can be multiple convolution kernels in a convo-
lutional layer, but each convolution kernel corresponds to a unique 
filtering feature. All features of the same sample are from identical 
convolution kernels. The number of parameters to train is greatly re-
duced in CNN. The pooling layer combines adjacent nodes into one 
to merge similar features, further reducing the amount of data trained. 
These characteristics make the CNN have a certain degree of transla-
tion, scaling, and distortion invariance. The fewer parameters make 
the training faster. The backpropagation algorithm is used to update 
the weight in the training process. The convolution kernel of a one-
dimensional CNN can be seen as a sliding on a time series, extracting 
short-term features between sequences. These features are further ag-
gregated by the pooling layer, which preserves the local features of 
the time series well, and then directly connects back and forth through 
the fully connected layer.

CNNs have been widely used in the fields of image and audio 
learning because of their good properties [24]. However, traditional 
CNNs use supervised learning algorithms, which require a large 
amount of supervised data in the learning process, which is costly. 
The key feature of CNNs is a local connection and weight sharing. For 
ease of understanding, both the input variable X  and the model pa-
rameter iW  are represented by a matrix, ×  represents a convolution 
operation, ib  is a bias, and only one bias is introduced for each fea-
ture, otherwise the degree of freedom of learning is too large. σ  is the 
activation function. The encoding process for CNN can be defined as 
the following equation:

 
Yi i iX W b= × +( )σ  (6)

Fig. 3. The principle of one-dimensional CNN.

In this paper, we need to deal with the time series of AE signals. 
Therefore, one-dimensional convolution is used as the convolution 
layer to construct a one-dimensional CNN suitable for feature extrac-
tion of AE signals. Given an input signal sequence iX , i = 1, ..., n, 
and filters W j , j = 1, ..., m. The filter sequentially performs a local 

convolution operation on the input features. In general, the length m 
of the filter is much smaller than the length n of the signal sequence. 
The output of the convolution is defined as:

 1
1

m
t j i j

k
y W X − +

=
= ×∑  (7)

In the convolutional layer, each neuron in the L layer is connected 
to neurons in a part of the L-1 layer to form a local connection net-
work. The convolutional layer requires an activation function f(x) for 
nonlinear feature mapping, and LW  is an m-dimensional filter that is 

the same for all neurons. ( ) ( ) ( )1 : 1 1 :, , L L L
i m i i m i m ia a a+ − + − + −

 = …  ,  ib is 

partial set the function, i = 1, 2, ..., n. Then the output of the neuron of 
the L layer is defined as:
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Pooling is a self-sampling process that greatly reduces the number 
of features, avoids overfitting, and allows the next layer of neurons to 
remain invariant to small morphological changes, providing strong 
robustness. The operation of the pooling layer is also a feature ob-
tained by some way from a region. The common pooling method is to 
take the maximum or average value of all neurons in the region. For a 
feature map ia  obtained by the convolutional layer, it is divided into 
a plurality of regions kR  k = 1, . . . , n.  Taking the maximum value 
of each region as:

 ( ) max
k

max k i
i R

pool R a
∈

=  (9)

The base of the convolution operation in Eq. (6) is added to the 
decoding portion of the autoencoder. During the decoding process, 
multiple feature values are obtained according to the hidden layer. 
Specifically, each deconvolution operation is performed by using a 
convolution kernel, and c is used as a bias. After the results obtained 
by the convolution kernels, an activation function is used to obtain 
an activation value of the output variable X ′ . The decoding process 
of reconstructing the input variable X ′  to the convolutional autoen-
coder network is defined as:

 ′ = +










∈

∑X X W c
j Y

j j jσ Y * * '  (10)

In addition, to ensure that the decoding process can restore the 
data to its original size, the CNN uses full convolution in both the en-
coding and decoding processes. In the ACSAE network, the pooling 
layer and the de-pooling layer are added after the corresponding con-
volution layer and deconvolution layer. Due to the information loss 
in the pooling operation, the convolution autoencoder network has a 
reconstruction error. An approximate representation of the input data 
is obtained by decoding. However, due to the fact that the reconstruc-
tion of the AE signal accuracy is not important for the general target 
task, the compressed and decompressed AE data has no distortion.

3. Gear test experimental setup and data processing

In order to verify whether the presented method is effective or 
not for gear pitting fault diagnosis, an experiment was designed and 
conducted on a gearbox test rig in the laboratory. The schematic of 
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the gearbox test rig is shown in Fig. 4. It consists of two 45 kW Sie-
mens servo motors, one of which is the drive motor and the other 
the load motor. The AE sensor was located on the gear housing close 
to the faulty gear. The main parameters of the gearbox are shown in 
Table 1.

Fig. 4. Schematic of the gearbox test rig

In this experiment, the speed of the gear was set to 3600 RPM and 
100 Nm. Table 2 shows the five gear pitting conditions. Condition 1 
is a normal gear. In condition 2, the middle teeth were approximately 

50% worn and the other two teeth were normal. Condition 3 had 50% 
pitting on the intermediate gear, about 10% pitting on the upper teeth, 
and the other tooth was normal. Under condition 4, approximately 
50% of the intermediate gears were worn out, and both the upper tooth 
and lower tooth had approximately 10% of the teeth been worn. Un-
der condition 5, the intermediate teeth were approximately 50% worn, 
the upper teeth were 30% worn, and the lower teeth were 10% worn. 
The pitting conditions of the gear is shown in Fig. 5.

For AE data acquisition, a true differential wideband sensor with 
high sensitivity and bandwidth was used. It has a good frequency re-
sponse over the range of 100–900 kHz. Differential sensors offer a 
lower noise output from a pre-amplifier.  The original AE signals of 
500 and 10,000 data points are shown in Fig.s 6(a) and (b) respective-
ly. As can be seen from Fig. 6, the AE data in various states are very 
close, and it is almost impossible for the naked eye to judge which one 
of the sections should be.

Fig. 7. The general procedure of the data processing using ACSAE method

Table 1. The major parameters of the gearbox

Gear Parameter Driving Gear Driving Gear

Tooth number 72 40

Module (mm) 3 3

Pitch diameter (mm) 120 120

Base circle diameter (mm) 202.974 112.763

Pressure angle (°) 20 20

Tooth width (mm) 85 85

Table 2. The approximate percentage of pitting area under 5 gear condi-
tions

Gear Condition Upper tooth Middle tooth Lower tooth

Condition1 Normal Normal Normal

Condition2 Normal 50% Normal

Condition3 10% 50% Normal

Condition4 10% 50% 10%

Condition5 30% 50% 10%

Fig. 6. Raw AE signals of gear pitting fault conditions
a)

Fig. 5. Pitting degree of driven gears

b)
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The original AE signals were processed according to the process 
shown in Fig. 7. The test was conducted in five sessions with sampling 
features of 51,200. First, the training sample set and the test sample 
set were determined. 80% of the data were used for training and the 
rest of the data used for validation and testing. 854 data points were 
set as the length for each sample. After selecting the training samples 
and test samples, the specific classification steps are as follows:

Step 1. Perform he-normal initialization [12] on the weight matrix of 
the network, and perform standard deviation random initiali-
zation on parameters such as offset.

Step 2. Scale the data to make it sensitive to the activation function 
relu.

Step 3. Use ACSAE to conduct layer-by-layer unsupervised training 
on the network.

a.  Calculate the error between the actual output vector and the  
 output vector. 

b.  The error obtained in the previous step is back-propagated 
layer by layer, and then the gradient of the error cost func-
tion is obtained by the stochastic gradient descent method, 
and then the weight parameters are updated. 

c.  Perform multiple iterations to improve the accuracy of the 
 network. 

d. The iteration is stopped when the specified iteration  
 termination condition is reached. 

e.  Re-tune the network with the expanded data.
Step 4.  Retain the weight of the encoder part and fine-tune the net-

work by two fully connected layers and a softmax classifica-
tion layer.

Step 5. Enter the test sample into the trained neural network to obtain 
the classification accuracy.

The structure of the ADCAE model designed for the number of 
channels in each convolution network was: 16-32-64-64-32-16. In the 
convolutional layer, the kernel size of all convolutional layers were 
7; stride was 1; padding selects ‘same’. In the pooling layer, all pool 
sizes were 2. padding selects ‘valid’. The optimizer used stochastic 
gradient descent algorithm, and loss used categorical cross-entropy. 
The initial value of learning rate was set as 0.001, decay as 1e-6, mo-
mentum as 0.9, and activation set as relu.

4. Results and discussions

Fig. 8 shows a comparison of accuracy in the diagnosis of gear 
pitting faults between the ADCAE algorithm and other algorithms. As 
shown in Fig. 8, the accuracy of the ACSAE algorithm is close to 98% 
for gear pitting fault diagnosis. Its fluctuations are small and more 
stable. The accuracy of the CNN algorithm is approximately 90%. 
The fully-connected network (FCN) performed well, reaching 93%. 
The two methods of the recurrent neural network, gated recurrent unit 
(GRU) and long short term memory (LSTM), did not reach 85%. In 
summary, the ADCAE algorithm is superior to other algorithms for 
gear pitting fault diagnosis. 

Table 3 provides a comparison of the accuracy of the ACSAE al-
gorithm and other algorithms, including the training set, the validation 
set, and the test set. As shown in Table 3, the accuracy of the ACSAE 
for the training can be as high as 97.87%. The accuracy of the valida-
tion and test set is close to the accuracy of the training. The results 
show that the ACSAE algorithm can achieve good gear pitting fault 
diagnosis results without observed overfitting problem. In contrast, 
the accuracy and training accuracy of CNN algorithms and other al-
gorithms used for validation and testing are not as good as the ACSAE 
algorithm. As a result, ACSAE’s gear pitting fault diagnosis results 
are more accurate using the original AE signals.

Fig. 9. The confusion matrix by the ACSAE algorithm for the testing set

Each type of data was tested in 500 groups. The test results are 
shown in Fig. 9. It can be seen from the confusion matrix of Fig. 
9 that the ACSAE algorithm presented in this paper has a better 
gear pitting fault diagnosis. The pitting fault diagnosis accuracy of 
condition 1 has over 99%. The recognition rate of condition 2 is 
100%. For the condition 3, 4, and 5, because the working condi-
tions are very similar, there has little misjudgment, but the lowest 
accuracy is still above 96%.

For each gear condition, 50 sets of test data were used for 
visualization of the dimensionality reduction. Fig. 10 is a three-

Table 3. The accuracy comparison between the ACSAE algorithm and the other 
algorithm’s for acoustic emission data sets

Accuracy Training set Validation set Testing set

ACSAE 0.9787 0.9774 0.9753

FCN 0.9340 0.9328 0.9311

CNN 0.9014 0.8947 0.8836

GRU 0.8179 0.8141 0.8119

LSTM 0.6793 0.6782 0.6567

Fig. 8. The comparison of accuracy between the ACSAE algorithm and the 
other algorithm for gear pitting fault diagnosis
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dimensional view of the features. It can be seen from Fig. 10 that the 
ACSAE algorithm presented in this paper can clearly distinguish be-
tween various gear conditions. Clustering formed in Fig. 10 can also 
verify the previous conclusions, the overall recognition rate is higher, 
and some points that are slightly closer to 3, 4 and 5 are likely to cause 
misjudgment of the neural network. 

Fig. 10. The visualization of three-dimensional features of gear pitting condi-
tions

The compressed three-dimensional features are visualized in two 
dimensions using t-SNE as shown in Fig. 11. As can be seen from 
Fig. 11, five different gear pitting faults can be clearly clustered. It 
can also be seen from the figure that the point adjacent in the high-di-
mensional data space are similar to the low-dimensional projections, 
which proves that the ACSAE is effective for the diagnosis of gear 
pitting faults.

These results have shown that the ACSAE algorithm is effective 
for using the original AE signals for gear pitting fault diagnosis. It is 
worth noting that this study only examines the case where the pitting 
of the intermediate gear, and the different degree of pitting of the adja-
cent gears. It is not clear whether the expected results will be achieved 

when the type of failure is more complicated. More in-depth research 
will be conducted in the future.

5. Conclusions

In this paper, a gear pitting fault diagnosis method based on the 
integration of one-dimensional CNN and sparse autoencoder was pre-
sented. The presented method was validated and tested with AE data 
collected from a gear test rig in the laboratory. The validation and 
test results have shown that the presented method has achieved more 
stable and reliable performance, and the accuracy of fault diagnosis 
has reached 97.9%.  The comparative results have shown that the 
diagnosis accuracy using the ACSAE algorithm is better than other 
methods.
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